Two vectors $\vec A$ and $\vec B$ have magnitudes $2$ and $1$ respectively. If the angle between $\vec A$ and $\vec B$ is $60^o$, then which of the following vectors may be equal to $\frac{{\vec A}}{2} - \vec B$
Two vectors $\overrightarrow{{X}}$ and $\overrightarrow{{Y}}$ have equal magnitude. The magnitude of $(\overrightarrow{{X}}-\overrightarrow{{Y}})$ is ${n}$ times the magnitude of $(\overrightarrow{{X}}+\overrightarrow{{Y}})$. The angle between $\overrightarrow{{X}}$ and $\overrightarrow{{Y}}$ is -
Which of the four arrangements in the figure correctly shows the vector addition of two forces $\overrightarrow {{F_1}} $ and $\overrightarrow {{F_2}} $ to yield the third force $\overrightarrow {{F_3}} $
The resultant of two forces, one double the other in magnitude, is perpendicular to the smaller of the two forces. The angle between the two forces is ........ $^o$
If $|\,\vec A + \vec B\,|\, = \,|\,\vec A\,| + |\,\vec B\,|$, then angle between $\vec A$ and $\vec B$ will be ....... $^o$
Prove the associative law of vector addition.