Two vectors $\vec A$ and $\vec B$ have magnitudes $2$ and $1$ respectively. If the angle between $\vec A$ and $\vec B$ is $60^o$, then which of the following vectors may be equal to $\frac{{\vec A}}{2} - \vec B$
Figure shows $ABCDEF$ as a regular hexagon. What is the value of $\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} + \overrightarrow {AE} + \overrightarrow {AF} $ (in $\overrightarrow {AO} $)
The resultant of two vectors at an angle $150^{\circ}$ is $10$ units and is perpendicular to one vector. The magnitude of the smaller vector is ....... units
While travelling from one station to another, a car travels $75 \,km$ North, $60\, km$ North-east and $20 \,km $ East. The minimum distance between the two stations is.......$km$
Statement $I :$Two forces $(\overrightarrow{{P}}+\overrightarrow{{Q}})$ and $(\overrightarrow{{P}}-\overrightarrow{{Q}})$ where $\overrightarrow{{P}} \perp \overrightarrow{{Q}}$, when act at an angle $\theta_{1}$ to each other, the magnitude of their resultant is $\sqrt{3\left({P}^{2}+{Q}^{2}\right)}$, when they act at an angle $\theta_{2}$, the magnitude of their resultant becomes $\sqrt{2\left({P}^{2}+{Q}^{2}\right)}$. This is possible only when $\theta_{1}<\theta_{2}$.
Statement $II :$ In the situation given above. $\theta_{1}=60^{\circ} \text { and } \theta_{2}=90^{\circ}$ In the light of the above statements, choose the most appropriate answer from the options given below