Two vectors $\vec A$ and $\vec B$ have magnitudes $2$ and $1$ respectively. If the angle between $\vec A$ and $\vec B$ is $60^o$, then which of the following vectors may be equal to $\frac{{\vec A}}{2} - \vec B$
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is
If vectors $P, Q$ and $R$ have magnitude $5, 12$ and $13 $ units and $\overrightarrow P + \overrightarrow Q = \overrightarrow R ,$ the angle between $Q$ and $R$ is
If the resultant of $n$ forces of different magnitudes acting at a point is zero, then the minimum value of $n$ is
Give equation to find the value of resultant vector and the direction of two vectors.
A particle is simultaneously acted by two forces equal to $4\, N$ and $3 \,N$. The net force on the particle is